

P3HT:PC₆₁BM 作为活性层制备无机/有机异质结 光电探测器的研究

翁思远1,蒋大勇1,2*,赵曼1

¹长春理工大学材料科学与工程学院, 吉林 长春 130022; ²教育部光电功能材料工程研究中心, 吉林 长春 130022

摘要 本体异质结(BHJ)是有机光电探测器(OPD)最有意义的结构之一,它可以通过在溶剂中混入供体和受体并借助 溶胶-凝胶方法来实现。BHJ已经被证明是调节有机半导体激子扩散长度的一种有效方法,而制备具有这种结构的有机 光电探测器是一项非常重要的工作。因此,使用共轭聚合物供体聚(3-己基噻吩)(P3HT)和富勒烯衍生物受体[6,6]-苯 C₆₁-丁酸甲酯(PC₆₁BM)形成活性层制备二元BHJ OPD,从而提高MgZnO紫外光电探测器的性能。结果表明,OPD 的响 应度可达 0.721 A/W,与MgZnO紫外光电探测器相比提高了约 3.9 倍。此外,OPD 具有更出色的检测能力、更好的响 应度和更高的光暗电流比。

关键词 探测器;有机光电探测器;共轭聚合物;富勒烯;二元本体异质结中图分类号 O472 文献标志码 A

DOI: 10.3788/AOS202242.1304001

P3HT:PC₆₁BM as Active Layer for Preparation of Inorganic/Organic Heterojunction Photodetector

Weng Siyuan¹, Jiang Dayong^{1,2*}, Zhao Man¹

¹School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin, China;

²Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun 130022, Jilin, China

Abstract Bulk heterojunction (BHJ) is one of the most meaningful structures of organic photodetectors (OPDs). It can be achieved by mixing donor and acceptor in a solvent with the aid of a sol-gel method. Furthermore, BHJ has been proven to be a very effective method to adjust the diffusion length of organic semiconductor excitons. The preparation of OPDs with this structure is a very important work. The conjugate polymer donor poly(3-hexylthiophene) (P3HT) and fullerene derivative acceptor [6, 6]-benzene C_{61} -butyric acid methyl ester (PC₆₁BM) are used to form the active layer to prepare a binary BHJ OPD, so as to improve the performance of MgZnO ultraviolet photodetector. The results show that the responsivity of the OPD can reach 0.721 A/W, which is about 3.9 times higher than that of MgZnO ultraviolet photodetector. In addition, the OPD exhibits excellent detection ability, better responsivity and high light to dark current ratio.

Key words detectors; organic photodetector; conjugate polymer; fullerene; binary bulk heterojunction

1引言

随着社会需求和人们生活水平的提高,紫外光电 探测器已经成为人类活动的重要设备之一。紫外光电 探测器已被应用于军事领域和商业领域中,如气体传 感、导弹探测、火焰传感、消防检测、环境监测、医疗应用和光通信^[1-3]。MgZnO的带隙为3.3 eV,对应的吸收波长在紫外光区域,表明MgZnO是一种非常好的制备紫外光电探测器的材料^[4-7]。MgZnO紫外光电探测器因其良好的灵敏度、稳定性和低成本而被广泛研

收稿日期: 2021-10-08; 修回日期: 2021-12-06; 录用日期: 2022-01-10

基金项目:国家自然科学基金(61774023)、吉林省科技发展计划项目(20200403048SF)

通信作者: *dayongjiangcust@126.com

研究论文

MgZnO紫外光电探测器具有许多优点,如优异的 电荷传输和载流子动力学。然而, MgZnO的带隙决定 了吸收波长范围,限制了其在较宽波长范围内的应用。 由于有机聚合物具有质量轻和易于加工等优点,受到 了越来越多的关注,故近年来在各个领域中显示出巨 大的应用潜力。特别是,宽带有机光电探测器(OPD) 已经成功被应用于许多重要的领域中,如天文探测、遥 感和红外成像等。将 MgZnO 和有机聚合物的优点结 合可提高光电探测器的性能,使有机光电探测器展现 出令人着迷的特性[11-12]。在高性能的有机光电探测器 制造中使用电子供体(如半导体聚合物)与电子受体 (如富勒烯衍生物)混合形成本体异质结(BHJ)结 构^[13-15]。Melancon等^[16]发现具有P3HT:PC₆₁BM[P3HT 为聚(3-己基噻吩), PC₆₁BM为[6,6]-苯C₆₁-丁酸甲酯] 活性层的有机光电探测器在低电压下实现了显著的宽 带光电导增益,且外量子效率接近100%。Lee等^[17]发 现利用不同混合比的P3HT:PC。BM制备的活性层以 700 r/min速度自旋可形成本体异质结,最后得出在 P3HT和PC₆₁BM的混合比为3:2的条件下具有最高 响应度的结论。在本体异质结器件结构中,辐射过程 中产生的激子可以在电子受体富勒烯衍生物和电子供 体聚合物之间的界面处有效地分离为自由电子和空 穴。综上所述,有机聚合物P3HT:PC61BM作为活性 层可以提高MgZnO紫外光电探测器的光电性能^[18-25]。

本文将P3HT作为电子供体,PC₆₁BM作为电子受体形成二元本体异质结活性层,以提高MgZnO紫外光电探测器的性能,提出了SiO₂/MgZnO/Au/PEDOT:PSS/P3HT:PC₆₁BM器件结构。因此,制造MgZnO紫外光电探测器与有机聚合物P3HT:PC₆₁BM形成的二元本体异质有机光电探测器是非常重要的。

2 实 验

2.1 材 料

本文中使用的材料包括 P3HT 共轭聚合物供体、 PC₆₁BM 富勒烯衍生物受体和 PEDOT: PSS 聚合物 (购自上海阿拉丁生化科技股份有限公司),1,2-二氯 苯溶剂(质量分数大于 99%,购自默克股份有限公 司),所有材料均直接使用。P3HT 和 PC₆₁BM 的化学 结构如图1所示。

2.2 有机光电探测器制备

2.2.1 MgZnO/Au紫外光电探测器的制备

采用射频(RF)磁控溅射技术在SiO₂衬底上生 长MgZnO薄膜。首先,将SiO₂玻璃片切成尺寸为1 cm× 1 cm的小玻璃片。然后,依次用丙酮、无水乙醇和去 离子水在超声处理下分别洗涤小玻璃片15 min,并用 干燥氮气吹干。在溅射前,使用分子泵和机械泵分别 对腔体内部进行高真空和低真空抽取,使腔体内的真 空度低于5×10⁻⁴ Pa,再将高纯氩气和高纯氧气混合

图 1 P3HT和PC₆₁BM的化学结构 Fig. 1 Chemical structures of P3HT and PC₆₁BM

气体以流量比为50:10通入腔体内。在整个溅射过程 中,溅射腔内生长压强和射频源功率分别保持在4Pa 和150W,沉积时间为1h。最后,用直流溅射方法在 MgZnO薄膜上沉积Au层。通过常规的紫外线曝光和 湿法蚀刻方法将Au薄膜光刻腐蚀为叉指电极,叉指长 度为500 µm,叉指宽度和叉指间距均为5 µm,最终可 得到MgZnO/Au紫外光电探测器。

2.2.2 MgZnO/Au/PEDOT:PSS/P3HT:PC₆₁BM 二元本体异质结有机光电探测器的制备

将 P 型聚合物 PEDOT: PSS 滴到 MgZnO/Au 紫 外光电探测器的叉指电极上。对于旋涂,前10 s 的转 速为 500 r/min,使得聚合物 PEDOT: PSS 层均匀地涂 覆在 MgZnO/Au 紫外光电探测器上,并且能够渗透到 多孔层内部。这有助于聚合物 PEDOT: PSS 覆盖大 部分 MgZnO 颗粒,进而获得高表面积的异质结。然 后,保持 2000 r/min 转速 50 s,得到 MgZnO/Au/ PEDOT: PSS 紫外 有 机 光 电 探测器。 P3HT 和 PC₆₁BM 溶液的质量比为 1:1,与 1,2-二氯苯溶液混 合。首先,将混合溶液在室温下磁力搅拌过夜使混合 物能够溶解。然后,取 50 μ L 混合溶液以 1000 r/min 转速旋涂 60 s 制备活性层。最后,将有机光电探测器 在 120 ℃的热板上烘烤 1 h,缓慢冷却以防止层裂。

MgZnO/Au/PEDOT:PSS/P3HT:PC₆₁BM二元 本体异质结有机光电探测器的制造步骤示意图,如图 2所示。图 2(a)~(f)分别为MgZnO靶材,MgZnO薄膜,MgZnO/Au紫外光电探测器,叉指电极未暴露的 MgZnO/Au/PEDOT:PSS紫外有机光电探测器,叉 指电极未暴露的MgZnO/Au/PEDOT:PSS/P3HT: PC₆₁BM二元本体异质结有机光电探测器和MgZnO/ Au/PEDOT:PSS/P3HT:PC₆₁BM二元本体异质结有 机光电探测器。

2.3 表征和测量

Rigaku Ultima VI X 射线衍射仪(XRD)在40 kV 电压和20 mA电流下使用CuKα辐射(中心波长为 1.543×10⁻¹⁰ m)表征光电探测器相。PerkinElmer Lambda 950紫外/可见光谱仪用于测量200~800 nm 的光吸收光谱。Agilent 16442 A 测试夹具用于测量 MgZnO/Au紫外光电探测器和MgZnO/Au/PEDOT: PSS/P3HT:PC₆₁BM二元本体异质结有机光电探测器

- 图 2 MgZnO/Au/PEDOT:PSS/P3HT:PC₆₁BM 二元 BHJ OPD 三维结构制造步骤的示意图。(a) MgZnO 靶材;(b) MgZnO 薄膜; (c) MgZnO/Au紫外光电探测器;(d)叉指电极未暴露的MgZnO/Au/PEDOT:PSS紫外有机光电探测器;(e)叉指电极未暴露的 MgZnO/Au/PEDOT:PSS/P3HT:PC₆₁BM二元BHJ OPD;(f) MgZnO/Au/PEDOT:PSS/P3HT:PC₆₁BM二元BHJ OPD Fig. 2 Schematic diagram of manufacturing steps for three-dimensional structure of MgZnO/Au/PEDOT: PSS/P3HT: PC₆₁BM
- binary BHJ OPD. (a) MgZnO target; (b) MgZnO thin film; (c) MgZnO/Au ultraviolet photodetector; (d) MgZnO/Au/PEDOT: PSS ultraviolet OPD with unexposed interdigital electrode; (e) MgZnO/Au/PEDOT : PSS/P3HT : PC₆₁BM binary BHJ OPD with unexposed interdigital electrode; (f) MgZnO/Au/PEDOT : PSS/P3HT : PC₆₁BM binary BHJ OPD

的暗电流与光电流的电流-电压(I-V)特性。 ZolixDR800-CUST光谱仪在室温下测试了MgZnO/ Au紫外光电探测器和MgZnO/Au/PEDOT:PSS/ P3HT:PC₆₁BM二元本体异质结有机光电探测器的响应度光谱。

3 结果与讨论

MgZnO/Au 紫外光电探测器和 MgZnO/Au/ PEDOT:PSS/P3HT:PC₆₁BM 二元本体异质结有机 光电探测器的 XRD光谱如图 3 所示。位于 34.84°和 72.74°处的衍射峰对应 MgZnO 的强(002)和弱(004) 平面,表明两个样品具有六边形纤锌矿结构(JCPDS no.36-1451),这证明了通过射频磁控溅射方法生长的 薄膜质量良好。MgZnO/Au/PEDOT:PSS/P3HT: PC₆₁BM 二元本体异质结有机光电探测器与MgZnO/ Au紫外光电探测器的衍射峰和衍射角的位置相同。

MgZnO薄膜和P3HT:PC₆₁BM薄膜的归一化吸

- 图 3 MgZnO/Au 紫外光电探测器和 MgZnO/Au/PEDOT: PSS/P3HT:PC₆₁BM二元BHJ OPD 的 XRD 光谱
- Fig. 3 XRD spectra of MgZnO/Au ultraviolet photodetector and MgZnO/Au/PEDOT: PSS/P3HT: PC₆₁BM binary BHJ OPD

收光谱如图 4(a) 所示。吸收光谱表明, MgZnO/Au/ PEDOT: PSS/P3HT: PC₆₁BM 二元本体异质结有机 光电探测器是制造金属-半导体-金属结构光电探测器 的良好候选者之一。在 310 nm 波长附近观察到 MgZnO薄膜中有明显的吸收边,这表明它具有较好的 紫外光电探测器性能并且具有潜在的应用价值。 P3HT: PC_aBM 薄膜的吸收光谱范围为 200~682 nm, 在 512 nm 波长处有最大吸收峰,在 550 nm 和 598 nm 波长处有两个肩峰,而PC。1BM在333 nm波长处有一 个峰。突出的峰是由 P3HT 中的富勒烯受体增强聚合 $物 \pi - \pi 键的积累造成的, 肩峰的存在是由键之间的强$ 相互作用导致更多的光吸收和有效电荷的传输造成 的。众所周知,活性层中受主的电子陷阱深度与周围 的施主密切相关,可以通过受主和施主之间的能级差 来分析。P3HT和PC₆₁BM的能级如图4(b)所示。对于 二元活性层,当PC₆₁BM分子被P3HT隔离时,电子陷阱 深度为0.8 eV。

图 5 显示了在黑暗和光照下 MgZnO/Au 紫外光 电 探测器和 MgZnO/Au/PEDOT: PSS/P3HTPC₆₁ BM二元本体异质结有机光电探测器的*I-V*特性曲线, Au 作为接触电极。与 MgZnO 紫外光电探测器相比, MgZnO/Au/PEDOT: PSS/P3HT: PC₆₁BM 二元本体 异质结有机光电探测器也具有优异的性能。例如,在 黑暗中, MgZnO/Au/PEDOT: PSS/P3HT: PC₆₁BM 二元本体异质结有机光电探测器的暗电流是 MgZnO 紫外光电探测器的 1/10。MgZnO/Au/PEDOT: PSS/ P3HT: PC₆₁BM 二元本体异质结有机光电探测器在 1 V 电压下的光暗电流比为 6.51×10³,比 MgZnO 紫外光 电探测器(1.52×10²)大约 42.9倍。

由于 MgZnO 薄膜本质上是 N型半导体,因此 MgZnO与Au显示出典型的半导体I-V特性。I-V特性。I-V特性。I-V特性。I-V特性。I-V特

图 4 光电探测器的性能表征。(a) MgZnO 薄膜和 P3HT: PC₆₁BM 薄膜的归一化吸收光谱;(b) MgZnO/Au/PEDOT: PSS/P3HT: PC₆₁BM 二元 BHJ OPD 中使用材料的能量示意图

Fig. 4 Performance characterization of photodetector. (a) Normalized absorption spectra of MgZnO thin film and P3HT : PC₆₁BM thin film; (b) schematic diagram for energies of materials used in MgZnO/Au/PEDOT : PSS/P3HT : PC₆₁BM binary BHJ OPD

基接触。由于良好的肖特基接触,故光生电子可以快速形成金属-半导体结。观察到MgZnO/Au/PEDOT: PSS/P3HT:PC₆₁BM二元本体异质结有机光电探测器 具有较低的暗电流,这可能是自由电子通过吸收大气 中的氧气而被困在表面所造成的。这些负电荷在表面附

近引入了耗尽区,当耗尽区暴露在紫外线下时,会导致较低的暗电流。当入射紫外光的能量大于带隙时,表面会产生大量的电子-空穴对。带有光生空穴的化学吸附氧离子与负电荷结合进而消除耗尽区。在关闭紫外线照明后,表面会通过减少自由电子再次吸收氧气。

图 5 光电探测器在光照和黑暗下测量的 I-V 曲线。(a) MgZnO/Au 紫外光电探测器;(b) MgZnO/Au/PEDOT: PSS/P3HT: PC₆₁BM二元 BHJ OPD

Fig. 5 *I-V* curves measured by photodetector in illumination and darkness. (a) MgZnO/Au ultraviolet photodetector; (b) MgZnO/Au/ PEDOT : PSS/P3HT : PC₆₁BM binary BHJ OPD

为了更好地检测光电探测器的性能,在一定的波长 范围内测量响应度。图 6(a)、(c)分别显示了在不同外 加偏压条件下的 MgZnO/Au 紫外光电探测器和 MgZnO/Au/PEDOT: PSS/P3HT: PC₆₁BM 二元本体 异质结有机光电探测器的响应度光谱图。MgZnO/ Au紫外光电探测器的最大响应度出现在310 nm波长 处,表明MgZnO薄膜在该特定波长处具有有效吸收, 进而 MgZnO/Au 紫外光电探测器对 310 nm 波长具有 高度选择性。这表明在310 nm 波长处确实存在许多 由 MgZnO 层中的结构缺陷引起的陷阱能级。 MgZnO/Au/PEDOT: PSS/P3HT: PC61BM 二元本体 异质结有机光电探测器的光谱响应范围为200~ 800 nm。此外,在整个可检测波长范围内,MgZnO/ Au/PEDOT:PSS/P3HT:PC₆₁BM二元本体异质结有 机光电探测器的响应度高于MgZnO紫外光电探测 器。在光波长为 $\lambda = 310 \text{ nm}$ 处,响应度从 MgZnO 紫 外光电探测器的 0.185 A/W 增加到 MgZnO/Au/ PEDOT: PSS/P3HT: PCalBM 二元本体异质结有机 光电探测器的 0.721 A/W。这是因为聚合物 P3HT: PC₆₁BM 旋涂后,由 MgZnO 结构缺陷引起的陷阱被

填充。

为进一步评估有机光电探测器的响应度性能,对 探测器的外量子效率(E)进行了光谱计算和分析。有 机光电探测器的外量子效率公式为

$$E = \frac{R \times h \times c}{q \times \lambda},\tag{1}$$

式中:R是响应率;h是普朗克常数;c是光速;q是电子 电荷量。可以发现,与MgZnO/Au紫外光电探测器相 比,MgZnO/Au/PEDOT:PSS/P3HT:PC₆₁BM 二元 本体异质结有机光电探测器的外量子效率更大。这与 MgZnO/Au/PEDOT:PSS/P3HT:PC₆₁BM 二元本体 异质结有机光电探测器有较小的暗电流非常一致。

MgZnO/Au/PEDOT:PSS/P3HT:PC₆₁BM 二元 本体异质结有机光电探测器的响应度和外量子效率在 不同外加偏压下具有线性趋势,如图7(a)所示。 MgZnO 紫外光电探测器和 MgZnO/Au/PEDOT: PSS/P3HT:PC₆₁BM 二元本体异质结有机光电探测器 在不同外加偏压下的 MgZnO响应度和外量子效率的 峰值比如图7(b)所示。检测光电探测器和电路的其 他电子元件效率可以通过探测率(D^{*})来衡量。D^{*}的计

图 6 光电探测器的光谱响应度和外量子效率曲线。(a)不同外加偏压下的MgZnO/Au紫外光电探测器的响应度;(b)不同外加偏压 下的MgZnO/Au紫外光电探测器的外量子效率;(c)不同外加偏压下的MgZnO/Au/PEDOT:PSS/P3HT:PC₆₁BM二元BHJ OPJ的响应度;(d)不同外加偏压下的MgZnO/Au/PEDOT:PSS/P3HT:PC₆₁BM二元BHJ OPD的外量子效率

Fig. 6 Spectral responsivity and external quantum efficiency curves of photodetector. (a) Responsivities of MgZnO/Au ultraviolet photodetector under different bias voltages; (b) external quantum efficiencies of MgZnO/Au ultraviolet photodetector under different bias voltages; (c) responsivities of MgZnO/Au/PEDOT : PSS/P3HT : PC₆₁BM binary BHJ OPD under different bias voltages; (d) external quantum efficiencies of MgZnO/Au/PEDOT : PSS/P3HT : PC₆₁BM binary BHJ OPD under different bias voltages; (d) external quantum efficiencies of MgZnO/Au/PEDOT : PSS/P3HT : PC₆₁BM binary BHJ OPD under different bias voltages;

$$D^{*} = \frac{R \times A^{\frac{1}{2}}}{(2 \times q \times I_{dark})^{\frac{1}{2}}},$$
 (2)

式中:A 是光电探测器的有效照射面积,其值为8.25×10⁻⁴ cm²; q 是电子电荷量,其值为1.602×10⁻¹⁹ C; I_{dark} 是 暗 电 流 。因此, MgZnO/Au 紫外光电探测器和 MgZnO/Au/PEDOT: PSS/P3HT: PC₆₁BM 二元本体 异质结有机光电探测器在6V电压条件下计算出的 D^* 分别为1.08×10¹¹ J和4.39×10¹¹ J,表明有机光电探测器具有更强的检测入射光的能力。

线性动态范围(*L*)是评估光电检测性能的另一个 重要参数,使用光照射来获得与光强度相关的光电流。 *L*的计算公式^[30-32]为

$$L = 20 \times \lg \left(\frac{I_{\text{light}}}{I_{\text{dark}}} \right), \tag{3}$$

式中:*I*_{light}是在1mW/cm²功率密度下测得的光电流。 在 310 nm 波长光照射和不同外加偏压条件下, MgZnO/Au/PEDOT:PSS/P3HT:PC₆₁BM 二元本体 异质结有机光电探测器的*D*^{*}和*L*特性曲线如图7(c) 所示。表1显示了两种光电探测器在黑暗和光照下的 电学性能、D^{*}和L。MgZnO/Au/PEDOT:PSS/P3HT: PC_{el}BM二元本体异质结有机光电探测器的响应度机 械稳定性使用误差线来证明,如图7(d)所示。实际应 用中的关键参数是有机光电探测器的环境稳定性。如 图7(d)中的插图所示,在储存超过一个月和三个月后 测试二元本体异质结有机光电探测器的稳定性。测试 后响应强度没有明显下降,表明MgZnO/Au/PEDOT: PSS/P3HT:PC_{el}BM二元本体异质结有机光电探测器 具有良好的环境稳定性。

MgZnO/Au/PEDOT: PSS/P3HT: PC₆₁BM 二元 本体异质结有机光电探测器的能级排列如图 8 所示, 这表明足够的能量偏移确保了 MgZnO 和 P3HT: PC₆₁BM之间的有效电子转移,重要的是 MgZnO 能够 有效地实现自身与 P3HT: PC₆₁BM 之间的空穴传 输^[33-34]。在制备的有机光电探测器中,电子从 P3HT: PC61BM 激发态的最低未占分子轨道(LUMO)注入 到 MgZnO 的导带中,然后到达 Au 电极的表面。此 时, MgZnO 价带中的空穴转移到 P3HT: PC61BM 的 最高占据分子轨道(HOMO),并且沿着 P3HT:

	表 1 黒暗	和尤照下两种尤电探测着	節的电字性能、D 和 L	
Table 1	Electricity performan	ce. D^* and L of two photo	detectors under darknes	s and illumination

Tuble 1 Dicenter, performance, D and D of the photodetectors and radiness and manimuton								
Structure	$I_{ m light}$ /A	$I_{ m dark}$ /A	$I_{ m light}/I_{ m dark}$	L/dB	D^*/J			
MgZnO/Au	1.08×10^{-6}	7.11×10^{-9}	1.52×10^{2}	43.6	1.08×10^{11}			
MgZnO/Au/PEDOT:PSS/ P3HT:PC ₆₁ BM	3.74 \times 10 ⁻⁵	6.94×10^{-9}	6.51×10^{3}	76.3	4.39×10 ¹¹			

- 图 7 OPD 的性能表征。(a)不同外加偏压下 MgZnO/Au/PEDOT: PSS/P3HT: PC₆₁BM 二元 BHJ OPD 的响应度和外量子效率 峰值的变化趋势;(b)不同外加偏压下测量两个样品 MgZnO 峰的响应度和外量子效率比值;(c)不同外加偏压下 MgZnO/Au 紫外光电探测器和 MgZnO/Au/PEDOT: PSS/P3HT: PC₆₁BM 二元 BHJ OPD 的*D**和 L 曲线图;(d)在储存 三个月以后 MgZnO/Au/PEDOT: PSS/P3HT: PC₆₁BM 二元 BHJ OPD 的响应度误差线,插图说明了 MgZnO 和 P3HT: PC₆₁BM 在储存超过一个月和三个月后的响应度值
- Fig. 7 Performance characterization of OPD. (a) Variation tendencies of peak responsivities and peak external quantum efficiencies of MgZnO/Au/PEDOT : PSS/P3HT : PC₆₁BM binary BHJ OPD under different bias voltages; (b) responsivity ratios and external quantum efficiency ratios of MgZnO peaks of two samples measured under different bias voltages; (c) *D*^{*} and *L* curves of MgZnO/Au ultraviolet photodetector and MgZnO/Au/PEDOT : PSS/P3HT : PC₆₁BM binary BHJ OPD under different bias voltages; (d) responsivity error bars of MgZnO/Au/PEDOT : PSS/P3HT : PC₆₁BM binary BHJ OPD after storage for over three months, illustration shows responsivities of MgZnO and P3HT : PC₆₁BM after storage for more than one month and three months

- 图 8 OPD 能带示意图。(a) MgZnO/Au/PEDOT: PSS/P3HT: PC₆₁BM 二元 BHJ OPD 中电荷载流子在黑暗下传输过程示意图; (b) MgZnO/Au/PEDOT: PSS/P3HT: PC₆₁BM 二元 BHJ OPD 中电荷载流子在光照下传输过程示意图
- Fig. 8 Schematic diagram of OPD energy bands. (a) Schematic diagram for transfer process of charge carriers in MgZnO/Au/PEDOT: PSS/P3HT : PC₆₁BM binary BHJ OPD under darkness; (b) schematic diagram of transfer process of charge carriers in MgZnO/ Au/PEDOT : PSS/P3HT : PC₆₁BM binary BHJ OPD under dilumination

PC61BM 传递到 PEDOT: PSS 空穴传输层中,最后到 达 Au电极。

此外,在富勒烯受体中低带隙聚合物需要收集更 多光子,通常表现出较大的能隙(ΔE_{LUMO}和ΔE_{HOMO})。 同时,受体最低未占分子轨道供体最高占据分子轨道 之间的能量下降相对较小。在光照下,P3HT 和 PC₆₁BM有不同的最高占据分子轨道能级,光生空穴 更倾向于被困在被 PC₆₁BM 包围的 P3HT 中。 E_{HOMO} 和 $E_{LUMO}之间供体-受体组合明显的差异确保了活性层中$ 电荷分离的驱动力。同时,由于活性层中 P3HT 的含量比较低,故没有连续的空穴传输通道。在黑暗中,由于 PC₆₁BM 的电极和最低未占分子轨道之间存在较大的三角形注入势垒,因此很难将电子从电极注入到活性层中。 提出了 SiO₂/MgZnO/Au/PEDOT: PSS/P3HT: PC₆₁BM 器件结构,即共轭聚合物电子供体 P3HT 和富 勒烯衍生物电子受体 PC₆₁BM 形成活性层,并通过溶 胶-凝胶法来形成二元本体异质结有机光电探测器,从 而提高 MgZnO 紫外光电探测器的性能。有机光电探 测器的响应度可达 0.721 A/W,与 MgZnO 紫外光电 探测器相比提高了约 3.9倍。此外,有机光电探测器 具有更好的响应度、更高的光暗电流比(6.51×10³)和 更出色的检测能力(4.39×10¹¹ J)。本研究制备了一 种新的有机光电探测器,其表现出的优良性能为有机 光电探测器的研究提供了新的思路。

参考文献

- Zhao Z J, Xu C Y, Niu L B, et al. Recent progress on broadband organic photodetectors and their applications
 Laser & Photonics Reviews, 2020, 14(11): 2000262.
- [2] Falson J, Kawasaki M. A review of the quantum Hall effects in MgZnO/ZnO heterostructures[J]. Reports on Progress in Physics, 2018, 81(5): 056501.
- [3] 段雨晗,丛明煜,蒋大勇,等.电压调制ZnO紫外探测 器光响应截止波长的研究[J].光学学报,2020,40(20): 2004001.

Duan Y H, Cong M Y, Jiang D Y, et al. Spectral response cutoff wavelength of ZnO ultraviolet photodetector modulated by bias voltage[J]. Acta Optica Sinica, 2020, 40(20): 2004001.

- [4] Zhou X, Jiang D Y, Zhao M, et al. Heteroepitaxial growth of high Mg-content single-phased W-MgZnO on ZnO matrixes in various nucleation states for solar-blind and visible-blind dual-band UV photodetectors[J]. Materials Research Bulletin, 2021, 142: 111438.
- [5] Kutlu-Narin E, Narin P, Yildiz A, et al. Effect of magnesium content and growth temperature on structural and optical properties of USCVD-grown MgZnO films [J]. Applied Physics A, 2021, 127(5): 367.
- [6] Han S, Xia H, Lu Y M, et al. UV response characteristics of mixed-phase MgZnO thin films with different structure distribution and high I_{uv}/I_{dark} ratio and fast speed MgZnO UV detector with tunneling breakdown mechanism[J]. Nanotechnology, 2021, 32 (23): 235202.
- [7] Gu K Y, Zhou X Y, Zhang Z L, et al. Tailoring microstructure and optical properties of MgZnO film on glass by substrate temperature[J]. Materials Letters, 2020, 278: 128416.
- [8] Zhao X J, Jiang D Y, Zhao M, et al. Avalanche effect and high external quantum efficiency in MgZnO/Au/ZnO sandwich structure photodetector[J]. Advanced Optical Materials, 2021, 9(8): 2002023.
- [9] Fei X M, Jiang D Y, Zhao M, et al. Improved responsivity of MgZnO film ultraviolet photodetectors modified with vertical arrays ZnO nanowires by light trapping effect[J]. Nanotechnology, 2021, 32(20):

205401.

- [10] Singh R, Khan M A, Sharma P, et al. Two-dimensional electron gases in MgZnO/ZnO and ZnO/MgZnO/ZnO heterostructures grown by dual ion beam sputtering[J]. Journal of Physics D, 2018, 51(13): 13LT02.
- [11] 赵成杰,李国辉,韩悦,等.结型有机光电探测器的研究进展[J].激光与光电子学进展,2020,57(13):130001.
 Zhao C J, Li G H, Han Y, et al. Research progress in junction type organic photodetectors[J]. Laser & Optoelectronics Progress, 2020, 57(13):130001.
- [12] Zhu J Q, Zhu H, Liu M J, et al. Ultrabroadband and multiband infrared/terahertz photodetectors with high sensitivity[J]. Photonics Research, 2021, 9(11): 2167-2175.
- [13] Zidan M N, Ismail T, Fahim I S. Effect of thickness and temperature on flexible organic P3HT: PCBM solar cell performance[J]. Materials Research Express, 2021, 8(9): 095508.
- [14] Li Q Y, Guo Y L, Liu Y Q. Exploration of near-infrared organic photodetectors[J]. Chemistry of Materials, 2019, 31(17): 6359-6379.
- [15] Zafar Q, Ahmad Z. Dual donor bulk-heterojunction to realize a quick and more sensitive organic visible photodector[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(13): 11144-11150.
- [16] Melancon J M, Živanović S R. Broadband gain in poly(3hexylthiophene) : phenyl-C61-butyric-acid-methyl-ester photodetectors enabled by a semicontinuous gold interlayer[J]. Applied Physics Letters, 2014, 105(16): 163301.
- [17] Lee J, Seon H, Kang J. Comparative studies between photovoltaic and radiation parameters in indirect-type organic X-ray detector with a P3HT: PCBM active layer
 [J]. Nanoscience and Nanotechnology Letters, 2017, 9 (8): 1159-1164.
- [18] 安涛,王永强,张俊.利用双给体实现可见光范围高探测率有机光电探测器[J].光子学报,2019,48(10): 1004001.
 - An T, Wang Y Q, Zhang J. Achieving high-detection organic photodetectors covering the visible range by using a ternary active layer[J]. Acta Photonica Sinica, 2019, 48 (10): 1004001.
- [19] Narra S, Tsai S E, Awasthi K, et al. Photoluminescence of P3HT: PCBM bulk heterojunction thin films and effect of external electric field[J]. Journal of the Chinese Chemical Society, 2021, 69(1):140-151.
- [20] Khairulaman F L, Yap C C, Hj Jumali M H. Improved performance of inverted type organic solar cell using copper iodide-doped P3HT: PCBM as active layer for low light application[J]. Materials Letters, 2021, 283: 128827.
- [21] Canto-Reyes D, Soberanis-Ortiz R A, Riech I, et al. Photocurrent enhancement estimation of P3HT: PCBM: Au films as a function of gold nanoparticles concentration[J]. Gold Bulletin, 2020, 53(3/4): 141-145.
- [22] Kaçuş H, Biber M, Aydoğan Ş. Role of the Au and Ag nanoparticles on organic solar cells based on P3HT:

第 42 卷 第 13 期/2022 年 7 月/光学学报

研究论文

PCBM active layer[J]. Applied Physics A, 2020, 126 (10): 817.

- [23] Munshi J, Chien T Y, Chen W, et al. Elastomorphology of P3HT: PCBM bulk heterojunction organic solar cells[J]. Soft Matter, 2020, 16(29): 6743-6751.
- [24] Gao H L, Meng J H, Sun J J, et al. Enhanced performance of polymer solar cells based on P3HT: PCBM via incorporating Au nanoparticles prepared by the micellar method[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(13): 10760-10767.
- [25] Jhamba L, Wamwangi D, Chiguvare Z. Dependence of mobility and charge injection on active layer thickness of bulk heterojunction organic solar cells: PCBM: P3HT[J].
 Optical and Quantum Electronics, 2020, 52(5): 245.
- [26] Huang J, Lee J, Vollbrecht J, et al. A high-performance solution-processed organic photodetector for near-infrared sensing[J]. Advanced Materials, 2020, 32(1): e1906027.
- [27] Ha J U, Kim K, Yoon S, et al. Synergetic effect of a surfactant on the facile fabrication and high detectivity of an inverted organic bulk heterojunction photodiode[J]. ACS Photonics, 2017, 4(8): 2085-2090.
- [28] Xu X F, Zhou X B, Zhou K, et al. Large-area, semitransparent, and flexible all-polymer photodetectors
 [J]. Advanced Functional Materials, 2018, 28(48): 1805570.

- [29] Li W, Xu Y L, Meng X Y, et al. Visible to near-infrared photodetection based on ternary organic heterojunctions[J]. Advanced Functional Materials, 2019, 29(20): 1808948.
- [30] Li C L, Wang H L, Wang F, et al. Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging[J]. Light: Science & Applications, 2020, 9: 31.
- [31] Huang J F, Lee J, Schrock M, et al. Large-gain lowvoltage and wideband organic photodetectors via unbalanced charge transport[J]. Materials Horizons, 2020, 7(12): 3234-3241.
- [32] Ren H, Chen J D, Li Y Q, et al. Recent progress in organic photodetectors and their applications[J]. Advanced Science, 2021, 8(1): 2002418.
- [33] Lee C C, Su W C, Chang W C, et al. The effect of charge transfer state on the open-circuit voltage of smallmolecular organic photovoltaic devices: a comparison between the planar and bulk heterojunctions using electroluminescence characterization[J]. Organic Electronics, 2015, 16: 1-8.
- [34] Leem D S, Wöbkenberg P H, Huang J S, et al. Micronscale patterning of high conductivity poly(3, 4ethylendioxythiophene) : poly(styrenesulfonate) for organic field-effect transistors[J]. Organic Electronics, 2010, 11(7): 1307-1312.